×

mysql查询速度 here

mysql查询速度(mysql count 带上 where 查询速度怎么优化)

admin admin 发表于2024-01-04 06:57:40 浏览34 评论0

抢沙发发表评论

大家好,关于mysql查询速度很多朋友都还不太明白,不过没关系,因为今天小编就来为大家分享关于mysql count 带上 where 查询速度怎么优化的知识点,相信应该可以解决大家的一些困惑和问题,如果碰巧可以解决您的问题,还望关注下本站哦,希望对各位有所帮助!

本文目录

mysql count 带上 where 查询速度怎么优化

count(*)在数据多的时候非常慢。

优化方法

这要从InnoDB的索引说起, InnoDB的索引是B+Tree。

对主键索引来说:它只有在叶子节点上存储数据,它的key是主键,并且value为整条数据。

对辅助索引来说:key为建索引的列,value为主键。

这给我们两个信息:

1. 根据主键会查到整条数据

2. 根据辅助索引只能查到主键,然后必须通过主键再查到剩余信息。

所以如果要优化count(*)操作的话,我们需要找一个短小的列,为它建立辅助索引。

在我的例子中就是status,虽然它的”severelity”几乎为0.

先建立索引:ALTER TABLE test1 ADD INDEX (status);

然后查询,查询速度提升近13倍。

参考:网页链接

如果索引是str这一列,结果又会是怎么样呢?

先建立索引: alter table test1 add index (str) 也很快,但是比起status这列还是有着1.5倍左右的差距。

mysql 多表连接查询速度超级慢

问题

我们有一个 SQL,用于找到没有主键 / 唯一键的表,但是在 MySQL 5.7 上运行特别慢,怎么办?

实验

我们搭建一个 MySQL 5.7 的环境,此处省略搭建步骤。

写个简单的脚本,制造一批带主键和不带主键的表:

执行一下脚本:

现在执行以下 SQL 看看效果:

...

执行了 16.80s,感觉是非常慢了。

现在用一下 DBA 三板斧,看看执行计划:

感觉有点惨,由于 information_schema.columns 是元数据表,没有必要的统计信息。

那我们来 show warnings 看看 MySQL 改写后的 SQL:

我们格式化一下 SQL:

可以看到 MySQL 将

select from A where A.x not in (select x from B) //非关联子查询

转换成了

select from A where not exists (select 1 from B where B.x = a.x) //关联子查询

如果我们自己是 MySQL,在执行非关联子查询时,可以使用很简单的策略:

select from A where A.x not in (select x from B where ...) //非关联子查询:1. 扫描 B 表中的所有记录,找到满足条件的记录,存放在临时表 C 中,建好索引2. 扫描 A 表中的记录,与临时表 C 中的记录进行比对,直接在索引里比对,

而关联子查询就需要循环迭代:

select from A where not exists (select 1 from B where B.x = a.x and ...) //关联子查询扫描 A 表的每一条记录 rA:     扫描 B 表,找到其中的第一条满足 rA 条件的记录。

显然,关联子查询的扫描成本会高于非关联子查询。

我们希望 MySQL 能先"缓存"子查询的结果(缓存这一步叫物化,MATERIALIZATION),但MySQL 认为不缓存更快,我们就需要给予 MySQL 一定指导。

...

可以看到执行时间变成了 0.67s。

整理

我们诊断的关键点如下:

\1. 对于 information_schema 中的元数据表,执行计划不能提供有效信息。

\2. 通过查看 MySQL 改写后的 SQL,我们猜测了优化器发生了误判。

\3. 我们增加了 hint,指导 MySQL 正确进行优化判断。

但目前我们的实验仅限于猜测,猜中了万事大吉,猜不中就无法做出好的诊断。

Mysql 查询速度慢怎么办

问题

我们有一个 SQL,用于找到没有主键 / 唯一键的表,但是在 MySQL 5.7 上运行特别慢,怎么办?

实验

我们搭建一个 MySQL 5.7 的环境,此处省略搭建步骤。

写个简单的脚本,制造一批带主键和不带主键的表:

执行一下脚本:

现在执行以下 SQL 看看效果:

...

执行了 16.80s,感觉是非常慢了。

现在用一下 DBA 三板斧,看看执行计划:

感觉有点惨,由于 information_schema.columns 是元数据表,没有必要的统计信息。

那我们来 show warnings 看看 MySQL 改写后的 SQL:

我们格式化一下 SQL:

可以看到 MySQL 将

select from A where A.x not in (select x from B) //非关联子查询

转换成了

select from A where not exists (select 1 from B where B.x = a.x) //关联子查询

如果我们自己是 MySQL,在执行非关联子查询时,可以使用很简单的策略:

select from A where A.x not in (select x from B where ...) //非关联子查询:1. 扫描 B 表中的所有记录,找到满足条件的记录,存放在临时表 C 中,建好索引2. 扫描 A 表中的记录,与临时表 C 中的记录进行比对,直接在索引里比对,

而关联子查询就需要循环迭代:

select from A where not exists (select 1 from B where B.x = a.x and ...) //关联子查询扫描 A 表的每一条记录 rA:     扫描 B 表,找到其中的第一条满足 rA 条件的记录。

显然,关联子查询的扫描成本会高于非关联子查询。

我们希望 MySQL 能先"缓存"子查询的结果(缓存这一步叫物化,MATERIALIZATION),但MySQL 认为不缓存更快,我们就需要给予 MySQL 一定指导。

...

可以看到执行时间变成了 0.67s。

整理

我们诊断的关键点如下:

\1. 对于 information_schema 中的元数据表,执行计划不能提供有效信息。

\2. 通过查看 MySQL 改写后的 SQL,我们猜测了优化器发生了误判。

\3. 我们增加了 hint,指导 MySQL 正确进行优化判断。

但目前我们的实验仅限于猜测,猜中了万事大吉,猜不中就无法做出好的诊断。

mysql大数据量,行数多少与数据容量,哪个直接影响查询速度

首先mysql作为传统关系型数据库,并不适合大数据量的查询,一般来说,如果数据行数达到千万价格,查询的速度会有明显的下降。影响查询速度的原因可以有很多,比如是否在常用字段上建立了索引,还有是否支持并发等等。

impalamysql查询速度

您想问的是impala和mysql的查询速度哪个最好对吧。impala好。

impala在处理较大的数据集时有着mysql所不具备的高性能。如果在mysql中对5亿条记录做汇总,可能需要很高的配置,而且运行时间不见得比impala的时间短。mysql的速度略慢一点。    

mysql innodb select count 查询速度慢,该怎么优化,已加二级索引,还是比较慢,400w数据

从 MySQL 5.7 开始,开发人员改变了 InnoDB 构建二级索引的方式,采用自下而上的方法,而不是早期版本中自上而下的方法了。在这篇文章中,我们将通过一个示例来说明如何构建 InnoDB 索引。最后,我将解释如何通过为 innodb_fill_factor 设置更合适的值。

索引构建过程

在有数据的表上构建索引,InnoDB 中有以下几个阶段:1.读取阶段(从聚簇索引读取并构建二级索引条目)2.合并排序阶段3.插入阶段(将排序记录插入二级索引)在 5.6 版本之前,MySQL 通过一次插入一条记录来构建二级索引。这是一种“自上而下”的方法。搜索插入位置从树的根部(顶部)开始并达到叶页(底部)。该记录插入光标指向的叶页上。在查找插入位置和进行业面拆分和合并方面开销很大。从MySQL 5.7开始,添加索引期间的插入阶段使用“排序索引构建”,也称为“批量索引加载”。在这种方法中,索引是“自下而上”构建的。即叶页(底部)首先构建,然后非叶级别直到根(顶部)。

示例

在这些情况下使用排序的索引构建:

  • ALTER TABLE t1 ADD INDEX(or CREATE INDEX)

  • ALTER TABLE t1 ADD FULLTEXT INDEX

  • ALTER TABLE t1 ADD COLUMN, ALGORITHM = INPLACE

  • OPIMIZE t1

  • 对于最后两个用例,ALTER 会创建一个中间表。中间表索引(主要和次要)使用“排序索引构建”构建。

  • 算法

  • 在 0 级别创建页,还要为此页创建一个游标

  • 使用 0 级别处的游标插入页面,直到填满

  • 页面填满后,创建一个兄弟页(不要插入到兄弟页)

  • 为当前的整页创建节点指针(子页中的最小键,子页码),并将节点指针插入上一级(父页)

  • 在较高级别,检查游标是否已定位。如果没有,请为该级别创建父页和游标

  • 在父页插入节点指针

  • 如果父页已填满,请重复步骤 3, 4, 5, 6

  • 现在插入兄弟页并使游标指向兄弟页

  • 在所有插入的末尾,每个级别的游标指向最右边的页。提交所有游标(意味着提交修改页面的迷你事务,释放所有锁存器)

  • 为简单起见,上述算法跳过了有关压缩页和 BLOB(外部存储的 BLOB)处理的细节。

  • 通过自下而上的方式构建索引

    为简单起见,假设子页和非子页中允许的 最大记录数为 3

  • CREATE TABLE t1 (a INT PRIMARY KEY, b INT, c BLOB);

  • INSERT INTO t1 VALUES (1, 11, ’hello111’);

  • INSERT INTO t1 VALUES (2, 22, ’hello222’);

  • INSERT INTO t1 VALUES (3, 33, ’hello333’);

  • INSERT INTO t1 VALUES (4, 44, ’hello444’);

  • INSERT INTO t1 VALUES (5, 55, ’hello555’);

  • INSERT INTO t1 VALUES (6, 66, ’hello666’);

  • INSERT INTO t1 VALUES (7, 77, ’hello777’);

  • INSERT INTO t1 VALUES (8, 88, ’hello888’);

  • INSERT INTO t1 VALUES (9, 99, ’hello999’);

  • INSERT INTO t1 VALUES (10, 1010, ’hello101010’);

  • ALTER TABLE t1 ADD INDEX k1(b);

  • InnoDB 将主键字段追加到二级索引。二级索引 k1 的记录格式为(b, a)。在排序阶段完成后,记录为:

  • (11,1), (22,2), (33,3), (44,4), (55,5), (66,6), (77,7), (88,8), (99,9), (1010, 10)

  • 初始插入阶段

  • 让我们从记录 (11,1) 开始。

  • 在 0 级别(叶级别)创建页

  • 创建一个到页的游标

  • 所有插入都将转到此页面,直到它填满了

  • 箭头显示游标当前指向的位置。它目前位于第 5 页,下一个插入将转到此页面。

  • 还有两个空闲插槽,因此插入记录 (22,2) 和 (33,3) 非常简单

    对于下一条记录 (44,4),页码 5 已满(前面提到的假设最大记录数为 3)。这就是步骤。

    页填充时的索引构建

  • 创建一个兄弟页,页码 6

  • 不要插入兄弟页

  • 在游标处提交页面,即迷你事务提交,释放锁存器等

  • 作为提交的一部分,创建节点指针并将其插入到 【当前级别 + 1】 的父页面中(即在 1 级别)

  • 节点指针的格式 (子页面中的最小键,子页码) 。第 5 页的最小键是 (11,1) 。在父级别插入记录 ((11,1),5)。

  • 1 级别的父页尚不存在,MySQL 创建页码 7 和指向页码 7 的游标。

  • 将 ((11,1),5) 插入第 7 页

  • 现在,返回到 0 级并创建从第 5 页到第 6 页的链接,反之亦然

  • 0 级别的游标现在指向兄弟页,页码为 6

  • 将 (44,4) 插入第 6 页

  • 下一个插入 - (55,5) 和 (66,6) - 很简单,它们转到第 6 页。

  • 插入记录 (77,7) 类似于 (44,4),除了父页面 (页面编号 7) 已经存在并且它有两个以上记录的空间。首先将节点指针 ((44,4),8) 插入第 7 页,然后将 (77,7) 记录到同级 8 页中。

  • 插入记录 (88,8) 和 (99,9) 很简单,因为第 8 页有两个空闲插槽。

  • 下一个插入 (1010,10) 。将节点指针 ((77,7),8) 插入 1级别的父页(页码 7)。

    MySQL 在 0 级创建同级页码 9。将记录 (1010,10) 插入第 9 页并将光标更改为此页面。

    以此类推。在上面的示例中,数据库在 0 级别提交到第 9 页,在 1 级别提交到第 7 页。

  • 我们现在有了一个完整的 B+-tree 索引,它是自下至上构建的!

  • 索引填充因子

    全局变量 innodb_fill_factor 用于设置插入 B-tree 页中的空间量。默认值为 100,表示使用整个业面(不包括页眉)。聚簇索引具有 innodb_fill_factor=100 的免除项。 在这种情况下,聚簇索引也空间的 1 /16 保持空闲。即 6.25% 的空间用于未来的 DML。

  • 值 80 意味着 MySQL 使用了 80% 的页空间填充,预留 20% 于未来的更新。如果 innodb_fill_factor=100 则没有剩余空间供未来插入二级索引。如果在添加索引后,期望表上有更多的 DML,则可能导致业面拆分并再次合并。在这种情况下,建议使用 80-90 之间的值。此变量还会影响使用 OPTIMIZE TABLE 和 ALTER TABLE DROP COLUMN, ALGOITHM=INPLACE 重新创建的索引。也不应该设置太低的值,例如低于 50。因为索引会占用浪费更多的磁盘空间,值较低时,索引中的页数较多,索引统计信息的采样可能不是最佳的。优化器可以选择具有次优统计信息的错误查询计划。

  • 排序索引构建的优点

  • 没有页面拆分(不包括压缩表)和合并

  • 没有重复搜索插入位置

  • 插入不会被重做记录(页分配除外),因此重做日志子系统的压力较小

  • 缺点

  • ALTER 正在进行时,插入性能降低 Bug#82940,但在后续版本中计划修复。

  • 请点击输入图片描述

mysql与es查询数据速度原理比较

财务平台亿级数据量毫秒级查询优化之elasticsearch原理解析_wang123459的博客-CSDN博客_elasticsearch 查询优化 mysql底层B-tree 支持矮胖,高胖的时候就很难受,说白了就是数据量多会增加IO操作。 ES底层倒排索引。term index不需要存下所有的term,而仅仅是他们的一些前缀与Term Dictionary的block之间的映射关系,再结合FST(Finite StateTransducers)的压缩技术,可以使term index缓存到内存中 (有点二级索引的感觉)

MySQL 查询慢的问题

问题

我们有一个 SQL,用于找到没有主键 / 唯一键的表,但是在 MySQL 5.7 上运行特别慢,怎么办?

实验

我们搭建一个 MySQL 5.7 的环境,此处省略搭建步骤。

写个简单的脚本,制造一批带主键和不带主键的表:

执行一下脚本:

现在执行以下 SQL 看看效果:

...

执行了 16.80s,感觉是非常慢了。

现在用一下 DBA 三板斧,看看执行计划:

感觉有点惨,由于 information_schema.columns 是元数据表,没有必要的统计信息。

那我们来 show warnings 看看 MySQL 改写后的 SQL:

我们格式化一下 SQL:

可以看到 MySQL 将

select from A where A.x not in (select x from B) //非关联子查询

转换成了

select from A where not exists (select 1 from B where B.x = a.x) //关联子查询

如果我们自己是 MySQL,在执行非关联子查询时,可以使用很简单的策略:

select from A where A.x not in (select x from B where ...) //非关联子查询:1. 扫描 B 表中的所有记录,找到满足条件的记录,存放在临时表 C 中,建好索引2. 扫描 A 表中的记录,与临时表 C 中的记录进行比对,直接在索引里比对,

而关联子查询就需要循环迭代:

select from A where not exists (select 1 from B where B.x = a.x and ...) //关联子查询扫描 A 表的每一条记录 rA:     扫描 B 表,找到其中的第一条满足 rA 条件的记录。

显然,关联子查询的扫描成本会高于非关联子查询。

我们希望 MySQL 能先"缓存"子查询的结果(缓存这一步叫物化,MATERIALIZATION),但MySQL 认为不缓存更快,我们就需要给予 MySQL 一定指导。

...

可以看到执行时间变成了 0.67s。

整理

我们诊断的关键点如下:

\1. 对于 information_schema 中的元数据表,执行计划不能提供有效信息。

\2. 通过查看 MySQL 改写后的 SQL,我们猜测了优化器发生了误判。

\3. 我们增加了 hint,指导 MySQL 正确进行优化判断。

但目前我们的实验仅限于猜测,猜中了万事大吉,猜不中就无法做出好的诊断。

如何解决mysql 查询和更新速度慢

问题

我们有一个 SQL,用于找到没有主键 / 唯一键的表,但是在 MySQL 5.7 上运行特别慢,怎么办?

实验

我们搭建一个 MySQL 5.7 的环境,此处省略搭建步骤。

写个简单的脚本,制造一批带主键和不带主键的表:

执行一下脚本:

现在执行以下 SQL 看看效果:

...

执行了 16.80s,感觉是非常慢了。

现在用一下 DBA 三板斧,看看执行计划:

感觉有点惨,由于 information_schema.columns 是元数据表,没有必要的统计信息。

那我们来 show warnings 看看 MySQL 改写后的 SQL:

我们格式化一下 SQL:

可以看到 MySQL 将

select from A where A.x not in (select x from B) //非关联子查询

转换成了

select from A where not exists (select 1 from B where B.x = a.x) //关联子查询

如果我们自己是 MySQL,在执行非关联子查询时,可以使用很简单的策略:

select from A where A.x not in (select x from B where ...) //非关联子查询:1. 扫描 B 表中的所有记录,找到满足条件的记录,存放在临时表 C 中,建好索引2. 扫描 A 表中的记录,与临时表 C 中的记录进行比对,直接在索引里比对,

而关联子查询就需要循环迭代:

select from A where not exists (select 1 from B where B.x = a.x and ...) //关联子查询扫描 A 表的每一条记录 rA:     扫描 B 表,找到其中的第一条满足 rA 条件的记录。

显然,关联子查询的扫描成本会高于非关联子查询。

我们希望 MySQL 能先"缓存"子查询的结果(缓存这一步叫物化,MATERIALIZATION),但MySQL 认为不缓存更快,我们就需要给予 MySQL 一定指导。

...

可以看到执行时间变成了 0.67s。

整理

我们诊断的关键点如下:

\1. 对于 information_schema 中的元数据表,执行计划不能提供有效信息。

\2. 通过查看 MySQL 改写后的 SQL,我们猜测了优化器发生了误判。

\3. 我们增加了 hint,指导 MySQL 正确进行优化判断。

但目前我们的实验仅限于猜测,猜中了万事大吉,猜不中就无法做出好的诊断。

关于本次mysql查询速度和mysql count 带上 where 查询速度怎么优化的问题分享到这里就结束了,如果解决了您的问题,我们非常高兴。